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PREFACE

This Final Report completes a research project, initiated in June

1968, to examine the photodielectric effect in semiconductors as the basis

for a new optical detector. The work was stimulated by the need for bet-

ter detectors of optical radiation at all wavelengths. The observation of

the photodielectric effect in 1966 by the author and his students demon-

strated the feasibility of a detector consisting of an illuminated semicon-

ductor wafer in a microwave cavity causing a resonant frequency shift pro-

portional to light intensity. The first published paper appeared in the

May, 1968 issue of the Journal of Applied Physics (Ref. 3 in this report).

The proposal to NASA was for support of a basic research study on

semiconductors at low temperatures to discover the nature of their optical

response, particularly with respect to sensitivity, bandwidth and wave-

length. The grant has supported an investigation of several semiconductors

with different energy gaps, corresponding to several different wavelengths.

The photodielectric detector can be made to have its peak response at any

wavelength for which a semiconductor can be found with a suitable optical

transitia In each case the free carriers generated produce a change in

crystal polarization by virtue of their dynamic response to the RF elec-

tric field in the crystal. A typical example is a sensitivity of several

hundred KHz change in the frequency of a 1 GHz resonator with a silicon

wafer illuminated with GaAs diode light at about 1 m7W/cm 2 at 4.20K. The

active volume of the sample is controlled by the photon penetration depth

into the wafer, which depends upon the relative photon energy compared to

the bandgap.

In the course of this research the photodielectric effect has shown

itself to be a powerful technique to study the optical and thermal
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response of various materials as well as the defect structure of single

crystals. Work on III-V and II-VI compounds (Ref. 2) showed the photodi-

electric effect could be used to study the trapping and recombination

dynamics of semiconductor crystals and powders. The principal advantages

include the absence of need for ohmic contacts, the absence of such con-

tact effects as contamination and rectification, and the ability to use

powder samples.

The derivation of an appropriate figure of merit was recognized as

one of the most important problems posed by a detector user, since his

acceptance of a new detector must, ultimately, be based upon system de-

sign consideration. These would include a critical comparison of all de-

tectors. Unfortunately, the photodielectric detector produces a frequency

shift in response to a change in light intensity, whereas more conventional

bulk and junction photodetectors produce voltage changes. This report

addresses itself to reconciling that problem.

The sensitivity, in Hz/watt, is readily measurable and is clearly a

function of many cavity and sample parameters. No simple answer could be

found to the question of detector bandwidth, since the cavity Q, carrier

lifetime and external circuit all play a part. This report defines the

problem and undertakes a closed-form solution for the case of low Q.

The present work is an analysis of the free-carrier photodielectric

effect (PDE) used for optical and infrared detection. The main goal is

to compare detectors utilizing the PDE with other detectors already known,

to define useful parameters, and to determine the advantages and limita-

tions of such detectors.
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The analysis is divided into three parts:

FIRST. The study of interactions between the microwave fields and

the semiconductor sample is required to define the PDE. Different models

are developed to represent different types of semiconductors (samples) and

also to simplify the subsequent analysis.

SECOND. The study of a system to measure the PDE continuously is un-

dertaken to find the noise sources and conditions which limit the perform-

ance of the PDE detector.

THIRD. The study is extended to the interaction between the radiation

to be detected and the sample used as detector. The literature on the

photodielectric effect and on photoconductors is used to compare the PDE

of different materials with more familiar detectors.

This report is largely the work of Andrea Albanese, who studied the

previous work by the senior author and his collaborators, and offered the

analysis as his M.S. thesis.
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ABSTRACT

A lumped model to represent the photodielectric effect is developed.

An analog simulation for a sample in a microwave cavity with a static

magnetic field is developed. A system to measure continuously the PDE

is analyzed. A performance factor to compare PD detectors versus AC

photoconductors is computed. The operating conditions are defined for

the appropriate noise conditions. The detectivity of the detector is

found to be limited by the semiconductor sample noise.
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CHAPTER I.

A CIRCUIT MODEL TO REPRESENT
THE PHOTODIELECTRIC EFFECT

1. INTRODUCTION

We define a circuit model which allows us to describe the properties

of a given sample (semiconductor) in a parametric way. A lumped model is

developed because it has .the following advantages:

FIRST. It facilitates the understanding of the PDE's properties when

it is used as a detector of infrared or optical radiation.

SECOND. It allows us to define parameters such as Q, bandwidth B,

resistance R , inductance Ls and capacitance C of the sample.

In turn, these parameters make it easier to calculate quanti-

ties such as energy stored and dissipated by the sample and

also the noise produced by the sample.

THIRD. Finally, the circuit representation of the lumped model al-

lows us to compare the PDE with other known mechanisms used

in detectors which also have a circuit representation.

2. THE PHOTODIELECTRIC EFFECT

The PDE is explained by analysis of the equation of motion for the

electrons within the semiconductor, assuming hole effects are analogous

and smaller. We separate the dielectric constant into two contributions

that are due to bound carriers and to free carriers. The bound electrons

account for the lattice dielectric constant, K . The free electrons also

produce a contribution to the total dielectric constant K due to their

inertial forces in an AC field, as given by Dresselhaus, Kip and Kittel4

and by Michel and Rosenblum5 . Effects of trapped electrons, as described

by Hinds and Hartwig2 are not included.
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All the contributions could be computed, assuming that the electrons

behave like a damped oscillator, and this is related by

K = 1 + Kb + [1]

where K = the total dielectric constant,

Kb = the susceptibility of the bound carriers in MKS units, and

Kf = the susceptibility of the free carriers.

The equation of motion of the free carriers is:

eE = m*x + m* x + m*w2x [2]
X T P

where m* = the effective mass,

T = the relaxation time,;

w = the plasma frequency, and

E = the macroscopic electric field.

To that:

eEx = the total external force that acts on the electron,

m*x = the inertial force of the electron,

m*i = the friction force, due to collisions and scattering of the

electrons, and

m*w2x = the restoring force which ties the electron to the sample.
p

In free electrons, this is due to space charge or Coulomb interaction

between electrons and the lattice. In the case of bound charges, it is

called m*w2xb, which is due to the Coulomb interaction between the nucleus

and the electron. In both cases, the restoring forces are manifested by

the depolarization field P which appears when we applied a constant elec-

tric field E to the sample

Figure 1 shows a sample with free charges to which is applied an

electric field E which causes the charges to separate according to charge
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polarity. This bipolar separation may be represented by the formation of

an electric dipole moment originating from the displacement of charge car-

riers from their average position. The restoring field is

E = nex [3]
r Se sE

which is computed applying the Gauss' law. The ratio Q/S is the electron

surface density, E is the lattice permittivity, n is the electron density,

e is the electron charge, and x is the average distance displaced.

From Eq. [3] the electron restoring force is

2
F = eE = ne x m* x [4]
r r EP p

for

2 ne [51
p m*"

Note that Figure 1 shows a rectangular slab which implies a depolarization

factor 7 L = 1.

The conduction current is defined as

i = neAx [6]

which implies

x 1;
x = neA

x = fidt 71]neA

1 :
x = neA

neA 1

The dot denotes the time derivative.

Replacing the variables of Eq. [7] into the equation of motion [2],

and multiplying both sides by the length of the sample along the applied

electric field we get:



5

m* , m*a m* 2 idt [8]
v = Me k 1 + M7 - i + M P2 - W2_ i t [8 1neA ne neA p

where V = E*R.
x

Eq. [8] can be written as

V = L + Ri + Lf idt [9]
s dt s C

where

E.A
C - [12]

o 9

According to Eq. [9], the equation of motion for the free electrons can be

represented with the circuit model shown in Figure 2.

A similar analysis may be made for the equation of motion of the bound

carriers which cause the lattice dielectric constant. Knowing from the ex-

periment8 that the resonant frequency of the bound carriers is larger than

the plasma frequency, then at frequencies near and below the plasma fre-

quency the lattice contribution can be represented by a capacitor Co in

shunt to the circuit of Figure 2. The final model looks like the circuit

represented by Figure 3.

The admittance Y(w) of the latter circuit is written as

LC
Y(w) = jC 1 + s0 R [13]

1 C 1 2 s+j

so s
With Eqs. [10], [11], [13], and [5] into Eq. [13], we have

Y() = jw X - + P [14]

P
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where the factor

E + P e()
S 2 2 + j

P

is defined as the complex permittivity 9 , and it was used in previous pub-

licationsl ' 2 ' 3 to explain the PDE.

Figure 4 shows a modification of Figure 3 for the case when the sam-

ple has ohmic contacts. These eliminate the space charge which produces

the restoring force and is represented by the series capacitor C . At
o

low frequencies near DC Figure 4 reduces to Figure 5, which represents

the known electrical model for photoconductorsl0

3. PHOTODIELECTRIC RESPONSE IN A STATIC MAGNETIC FIELD

The free carrier photodielectric theory has been derived above, and

by others3'4 for the case where the dynamic effects of electrons dominate

over that of holes, and where there is only an RF electric field present.

Since it is a straightforward matter to include a static magnetic field,

this is done below to bring out new effects which have not been considered

previously for the case of PDE.

The total electromagnetic force acting upon an electron is expressed

by the Lorentz force:

-e[E + r x B] =+ m * [15]
T p

and considering the case when E = E and B = B then r x B = r Bzi - rxB j,

and Eq. [15] can be written as
eB+i * 2 e z*r +--r + W r E - r

eB
r +-r + m2r = r [15a]

y T y p2 y m2* x2
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n

C
0 1

n

FIGURE 4. Equivalent circuit for the
sample with ohmic contact.

The models permit a direct comparison between the AC photoconductive

detector and photodielectric detector where there are no ohmic contacts to

the sample.

R 1
c n

FIGURE 5. Equivalent circuit for a
photoconductor.

For the case where ohmic contacts are made to a photoconductive de-

tector, the frequency must be sufficiently high so the free carrier excur-

sion in one-half cycle is less than the sample thickness.
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calling r = x , r = y
x y eB

z= v r = v and ci
x x y y m. c

we can express Eq. [15a] in the state form:

x 0 1 0 0 x 0

v -o 1 0 o -e

x + E [16]

y 0 0 0 1 y 0

v 0 -2 v 0
y - c2 p2 T Y - -

which, without magnetic field, Eq. [16] reduces to the case treated in

Section II:

= + E [17]
x Wpl C x m

The expression for vx is found by solving Eq. [16], and the sample density

current is j = nev .x

Two more general cases which include (1) electron and hole dynamic

effects with a static B-field; and (2) free, bound and trapped electron

dynamics in an E field are too complex for a single comparison with the

experiment. The equation for these cases, corresponding to Eq. [16]

above, are given in Appendices A and B for completeness.

4. CIRCUIT REPRESENTATION OF THE CAVITY11

A cavity can be represented by a lumped equivalent circuit (Figure

6), which is a good approximation for behavior at frequencies near the

cavity resonant frequency (or single mode).

In Figure 6, jX is the reactive effect of the modes far from reso-

nance and G, L, C represents the mode near resonance.



L _C G

FIGURE 6. Equivalent circuit of a
microwave cavity mode.

m:l
a X

a

FIGURE 7. Equivalent circuit of the
microwave cavity coupled
to a waveguide.

m:l
Ib ai

0 B
L+ G

Ib' a't

FIGURE 8. Equivalent circuit of the
microwave cavity matched
to the waveguide.
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When the cavity is coupled to a waveguide this can be represented by

the ideal transformer of turns ratio m:l (Figure 7), where m is the volt-

age coupling transfer ratio.

Some relations for the cavity without a sample are:

Za = m X + 1 = input impedance.

G + j(wC- -1)wL

Defining
wCo 2 1 1

Q G - - and R = -
o G o LC G'

Z can be approximated by
a

Z =jm2X + mR [18]
a 1 + j2Q6'

where

W

The series reactance jX can be removed either by defining a new reso-

nant frequency or by referring the input to a shifted point on the wave-

guide. The latter is a common and a new reference may be taken as the

position of the "detuned short." That is, the cavity is detuned enough

to make Qo ' >> 1, either by detuning the cavity itself (changing w o) or

changing the frequency w.

By Eq. [18] the termination is then essentially jm2X and the "de-

tuned short" will be at the position k from the end where R tan at m2X
o

Then from Figure 8 the impedance at the point b is

Z + jRotan B _ m2Rb
Zb = a 0 [19]

1 + j(Za/R )tan at 1 + j2Q 6

where R = R(1 + m4x2)-1

m4Xa
and 6 = 6' -

2Q
o



or
- ~ (1 + m 4XRb/2Qo)

o0

where

r = Wo (1 + m4XRb/2Qo).

The reflection coefficient p at point b is

V Z -1

p = - [20]
V+ Z + 1

+ L

where ZL = Zb/Ro, and Ro is the characteristic impedance of the waveguide.

Inserting Eq. [19] into [20] yields

m2R
R - 1 - j2Qo6

P 0 [21]
m2RbM + 1 + j2Q 6

R o
0

and for critical coupling,

m2R

R

we find
jQo6

p = . [22]cr 1 + jQ 
[22]

Note that p approaches to zero at the resonant frequency, and this

fact is used to determine the resonant frequency of the cavity. The error

sources in determining p are treated in Chapter III.

The insertion of a sample into the cavity may be represented by

another ideal transformer of turns ratio l:g, which connects the sample

to the cavity (Figure 9), where g is related to the "filling" factor of

the sample, n, as shown below in Eq. [30].



b a m:1: g s

C s

I I

b' a I

II C

FIGURE 9. Equivalent circuit for a microwave
cavity loaded with a sample (PDE).

m:lb la m:l

~~ l:g s
I 0 "

b' la'

m':C L GC
2b 2ai o s

I 0

1b' 2a'

N)

FIGURE 10. Equivalent circuit for a two-port
microwave cavity loaded with a sample (PDE).
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In general, a model for a two-port cavity and the sample is shown in

Figure 10. This model would be used for a transmission cavity.

5. COMPLETE MODEL: CAVITY PLUS SAMPLE

In general, the sample can be analyzed as a function i = f(E,H) which

represents the behavior of the charge carriers and the lattice contribu-

tion with the equivalent circuit model.

The whole system, cavity plus sample, is illustrated by Figure 11,

where CT = C + g C . The system is represented by the state variables, q,

the charge on CT, and 4, the flux in L. Figure llb is equivalent to Fig-

ure lla. Then
V.

RTCT L R

CT

RR
where the output is - = V and R 0 R

CT o
In matrix notation

= x j + [o Vin+ i. [23]

-1T 0 0 0

Using Eq. [16]

x 0 1 0 0 x 0

_2 1 e
2 -- 0 v - e

xpl .r -clxx cl x + E [16]

y 0 0 0 1 y 0

2 1
0 W c2 Wp2 _T



o l:g

~in R i f(E,H)-CC

FIGURE lla. Equivalent circuit for a general sample.

R 1:g

V. V = f(E,H.)In V Vc R L s

UT - T
FIGURE l1b. Equivalent circuit for a general sample.

4=
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where E = Vs/ s = giVc/ s = g(l/CT s)q, we substitute for the sample current

i = -(nevx + Aex)As , represent the whole system by a 6th order matrix as:

* 1 1 * 1- negA negA 0 0 --
RTCT L s 5 Ro

-~ O 0 0 0 0 0

x 0 0 0 1 0 0 x 0
x + Vin

Se 0 2O -w v 0 in
x m* CT s pl T cl x

y 0 0 0 0 1 y 0

v 0 00 2 1 v 0
y c2 p2 T y

[24]

6. CALCULATION OF THE PARAMETERS OF THE MODEL

All the system parameters in Eq. [24] can be measured experimentally

and predicted theoretically. They can be classified as cavity parameters

(those concerning the unloaded cavity), and sample parameters, (those used

to describe the sample).

The unloaded cavity parameters are R, C. L. They can be computed

from the following relations:

1 RL=- o (-)
o 0

C =1 R)-l [251
o Qo
0o 0

R 0~R)
R = Qo

o

where wo and Qo are determined directly by measurement. The value of the

ratio R/Qo is found by changing the capacitance of the cavity (without dis-

turbing the current distribution) and measuring the corresponding change



in the resonant frequency. The change in capacitance is accomplished by

varying the dielectric constant of the dielectric inside the cavity, or by

a small variation of the boundary of the cavity in the region of high

electric field1 2 . The relation is

dw
S2 o [26]Qo odC

The theoretical developments of these parameters are found in reference 13

for a circular cylindrical resonator and in reference 14 for are-entrant

cylindrical cavity.

The g factor can be computed by measuring the resonant frequency w0

of the cavity twice, once with a known sample present and again without it.

These measurements give:

w2 = and w2 _ 1 [27]o LC ol LCT

where, by definition of C = C + g2 Co , we obtain

2 CT - C

g C [28]
o

The relation between the parameter g and the filling factor n, obtained from

the perturbation theoryl 5 , is

Aw 1 1 K -lA= T( K = n [291
m K K Ko 1 2

for K1 = 1 and K2 = K where K1 and K are the dielectric constants of free

space and the sample, respectively. Combining [27], [28] and [29] we find

the relation

2 Co A
n =g [30]

2CT wo
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7. ANALOG SIMULATION

Our approach to study all the cases mentioned before is to write the

equations which represent the system in a state form, and use the standard

method to find the solution. In the simpler case we will deal with 4 x 4

matrix, and the computation of the poles (natural frequencies of the system)

is not a problem if we have the computer facilities. However, we don't

have a general expression for the solution of the system in terms of its

parameterS. We can only have solutions for discrete values of the para-

meters. The system becomes complicated if some of the parameters are vary-

ing with time. The LaPlace transform method is not useful, and the solu-

tion for a time varying case can be quite involved.

In these cases, a simulation of the system with the analog computerl6

will help us to find its response. We simulate the case of the cavity and

sample with free electrons only when a constant magnetic field and a micro-

wave electric field was applied. The state equation is represented by Eq.

[24]. For this case, we have a 6 x 6 matrix. This is the union of 2 x 2

matrix corresponding to the cavity and a 4 x 4 matrix corresponding to the

sample, plus some interaction terms which couple the two systems. The first

system has a high Q (= 10 4) and the second low Q (= 1). We study the be-

havior of the low Q system through one of the state variables of the high

Q system (voltage of the cavity).

When an input voltage V. is applied to the system, the state vari-
in

able V = T/CT will be the sum of six terms with different frequencies

and amplitudes. We assume that 4 of the terms, those corresponding to the

low Q system are small and are neglected. The other two, corresponding to

the high Q system will stay longer, and they will give information on the
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whole system, including the sample through the coupling of interacting

termS. The information is in the frequency and in the amplitude of the re-

sponse of the two state variables. (Voltage and current of the cavity).

Then we can assume that we have a second order system as long as the

coupling and the Q of the sample are small. It is only in this case that

we characterize the system in terms of a single resonant frequency of the

cavity and a single Q. If we assume this type of solution, then we will

observe in all the cases that the two state variables corresponding to the

cavity are purely sinusoidals. We can then measure its frequency and its

damping rate for different values of the sample parameters.

Figure 12 shows the circuitry assembled to simulate the Eq. [24]. The

circuit is divided in three parts corresponding to the cavity, plasma and

magnetic properties. Each part has two integrators for two state variables

which are the voltage and current for the cavity, the position and velocity

in the x direction for the plasma properties, and the position and velocity

in the y direction for the magnetic properties.

The values required to simulate an experiment are: the resonant fre-

quency of the cavity wo, the cavity Q, the filling factor of sample n, the

relaxation time for the free electrons in the sample, and different values

of plasma and cyclotron resonant frequencies. The following values were

chosen:

o = 279 x 109 Hz

Q = 10 4

10- 1 3 < T < 10
sec sec

n = 1.25 x 10 - 3



CAVITY PLASMA EFFECT I MAGNETIC FIELD EFFECT
I

- I

Sexpress voltagesI

-*- express currents
g2C

K = = 2nl
CT

FIGURE 12. Analog equivalent circuit to simulate the PDE
in a static magnetic field.
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W was chosen as the normalized frequency. To study the frequency response

of the circuit, a voltage impulse is applied and the trajectories of the

state variables are recorded. Figure 13 shows the expected trajectory for

the two state variables.

After observing a sinusoidal response, the analog circuit is calibrated

in the following way:

FIRST: Only the cavity section is connected. The state variables are

recorded on the two channels (xy) of a recorder or plotter. The

trajectory starts at position 0 at time t = 0, which is the ini-

tial condition. The trajectory goes to position 1 at time t 1 .

The trajectory is similar to Figure 13, and the initial and final

position are shown in Figure 14 for different values of Q. In

this case, tI = 94 sec, and the trajectory is made by 148 complete

revolution plus the fraction shown. When the cavity Q is large

the locus terminal point is outside the corresponding point when

the Q is small. The radial scale is related to Q, and the angle

change represents frequency change.

SECOND: The part of the circuit representing the plasma properties of the

sample is included in the second experiment. The Q of the cavity

was set at 104 and the filling factor n = 1.25 x 10- 3 . The experi-

ment is performed for different values of 2 and the results are
p

shown in Figure 15. We observe how the frequency and Q change for

different values of a . The relation between the change in angle
p

degrees shown in Figure 16 and the change in resonant frequency

of the cavity is expressed by a = Af /A6, which is specified in

each figure. Different figures are shown for different values of

T.
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t=o

t=tl

t 3 > t 2 > t1 > 0

FIGURE 13. Expected qualitative trajectory for
the two state variables corresponding
to the cavity.
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FIGURE 14. Analog simulation of the microwave cavity.
Different values of cavity Q cause different
positions at t = 94 sec.
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i!

FIGURE 15a. Analog simulation of the cavity with the sample
for different values of w /p o

I = 1.2 x 10- lsec.

K = 0.0025

W2 = 0.000
c

a = .106 NHz/angle degree
AO
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qT

FIGURE 15b. Analog simulation of the cavity with the sample
for different values of 4/w 2

p o

T = 1.2 x 10-10sec.

K = 0.0025

2 = 0.000c

a = = .106 MHz/aagle degreea -
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THIRD: The part of the circuit corresponding to magnetic properties is

connected. Figure 16 shows the results for different e, Wpl and

Wp2. The differences between wpl and wp2 are due to different

values of depolarization factor L for x and y directions.
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FIGURE 16 a. Analog simulation of the cavity with the sample
for different values of w2 /,? a static
magnetic field and:

T = 1.2 x 10-10 sec.

K = 0.0025

W2 = 0.1 W2
C 0

a = .106 MHz/angle degree



27

FIGURE 16b. Analog simulation of the cavity with the sample
for different values of w2 /w2 , a static magnetic
field and: p 0

r = 1.2 x 10-10 sec.

K = 0.0025

2 = 0.2 w2

C 0

a = .106 MHz/angle degree
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FIGURE 16 c. Analog simulation of the cavity with the sample
for different values of w2 /o2

2 , a static magnetic

field and:

-10

T = 1. 2 x lo-10sec.

K = 0.0025

W2 = 0.4 W2
C. 0

a = .106 MHz/angle degree
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FIGURE 16d. Analog simulation of the cavity with the sample
for different values of w2 /w2 , a static magnetic
field and: p'

T = 1.2 x 10 sec.

K = 0.0025

w2 = 0.8 w2
0 0

a = .106 MHz/angle degree
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FIGURE 16e. Analog simulation of the cavity with the sample
for different values of w2./2 , static magnetic
field and: p0

T = 1.2 x 10 -10see.

K = 0.0025

W2 = 0.4 W2
a 0

a = 0.106 MHz/angle degree

W21 = 2 = 0.2w2
p1 p2  p

i ii:

pl p2 p
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FIGURE 16f. Analog simulation of the cavity with the sample
for different values of w2/W2 static magnetic
field and: p 0

= 1.2 x 10 sec.

K = 0.0025

W2 = 0.8 w2
c 0

a = 0.106 MHz/angle degree

w2 = . 2 = 0.2w 2

pl p2 p



CHAPTER II.

ANALYSIS OF THE CIRCUIT FOR THE P.D.E. SYSTEM

1. INTRODUCTION

The mechanisms which produce the changes in resonant frequency of the

microwave cavity are discussed in Chapter I. This chapter is devoted to

analyzing the methodology used to measure the change in cavity resonant

frequency continuously. The circuit used to accomplish this is similar to

the one designed by R.V. Pound17 for frequency stabilization of microwave

oscillators with a high Q resonant cavity. Figure 17 is a block diagram

of Pound's system.

In this system, the discriminator circuit develops a voltage which is

a measure of the difference between the oscillator frequency and the cav-

ity resonant frequency. When this voltage is amplified and superimposed

in the correct sense on the supply voltage of an element of the oscillator

(i.e., the reflector voltage for a klystron) the frequency error is re-

duced. In this way the oscillator follows the cavity resonant frequency.

It is important to note that Pound's circuit oscillator adjusts itself

to the constant resonant frequency of the cavity. In the present case,

however, the resonant frequency is not constant, but it varies according

to the electro-optic properties of the semiconductor crystal sample inside

the cavity.

The following analysis is limited to the study of variations in the

oscillator frequency caused by the sample inside the cavity. The sample

and cavity are considered first, then the system as a whole, and Chapter

III presents a summary of conclusions.

32
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MI CROWAVE
OSCILLATOR WAVEGUIDE OUTPUT

WIRES

WIRES
AMPLIFIER DISCRIMINATOR

CAVITY

LIGHT SOURCE 1

SAMPLE

POUND'S CIRCUIT

ADDITIONS TO POUND'S CIRCUIT

FIGURE 17. Block diagram of the detector system.
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2. SAMPLE ANALYSIS

Figure 3 in Chapter I represents the sample equivalent circuit in its

simplest form. The admittance of the circuit shown in Figure 3 is

Y(w) = jwC + 1o 1
jWL+ R+

s s jwC o

or

Y(w) = G(w) + jB(w) [31]

The real and imaginary components are

[ 1 W2

G(w) = wC = G(4, wT) [32]

(4- 1)2 +

and

W2 12

B(w) = ( wC + wC = B(-, WT) [33]

- 1)2 +

where

2  1 ne
2

p LC m*'

m*£
R s

s  neA-- Tr

L' = R T,
s s

£A

o £
W 2  W 2

The derivatives of G(-, Lu) and B(-, wrT) with respect to w2 are:

S 4.
. 2  1 - +

G (, W-1O LOT
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B(-- wT)(C
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7- 0
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5-

4-

3-
2

2- _

01 0.1

0 2 3 4 w
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-3-
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-4-

-5-

FIGURE 18. Susceptance of the sample for different
values of wt product and w2 /w~

p
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2

wC
0

10- 10
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8-
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6-

5
5-

4

3-

2
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1

0.5
0.1

0 1 2 3 4 2

FIGURE 19. Conductivity of the sample for
different values of wT product
and ~2//2

p
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2w2

1
2 

1 CB'(-, ) = + W _ [351
_1)2 +J [ _ 12+ 2

Eqs. [32], [331, and [351 are shown in Figures 18, 19 and 20, respectively

for various wT products. Observing this figure, we can choose the following

three regions:

Region I w < w
P

Region II w = W

Region III w > w.
p

In each.of the three regions, there is a maximum value for IB'I.

3. CHANGE OF THE CAVITY RESONANT FREQUENCY DUE TO
A CHANGE IN THE SUSCEPTIBILITY OF THE SAMPLE

The model for the cavity plus the sample is represented by the circuit

of Figure 9 in Chapter I. The resonant frequency of the circuit of Figure

9 is w such that

WC - 1 + B(, oT ) = 0
ST wL

o o0

where C = C + g2Co, and solving for wo

o c 2C T

from which can be computed the change in the cavity resonant frequency,

given by Eq. [36]

Aw 2
Af 2AB(o . [36]

o 2Tr 2rC T  o
T o

4. THE MICROWAVE DISCRIMINATOR 1 7

A microwave phase discriminator is constructed with the cavity, two

magic tees and two detector diodes. It is illustrated by Figure 21.
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Yo
2 DIODE B

OSCILLATOR 3 4 V

AVITY

x, =x 1 2

VD VA - VB
DIODE A

FIGURE 21a. The microwave frequency discriminator.

FIGURE 21b. Magic T
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The output voltage of the discriminator is

V =PD a [371D (1 + a)Z + aZ

where P = the power available from the matched generator connected to the

discriminator,

2(f - f )
a = Qf o

o

D = the rectification efficiency of the crystals in volts per unit

incident power, and

Qo
a = the ratio .

, EXT*

And for a cavity representation, as in Figure 22,

Qo m2R

EXT o

where Q = w RC
0 O

w CR
o o

=EXT = m2*

The rate of change of the discriminator voltage with frequency is

greatest at resonance, or a = 0, and it is

dVD Qo 2a= DP -- [38]df f (I + a)

This expression has its maximum value for a equal to 1, and for the frequen-

cy stabilization circuit this is the optimum value of a. (a = 1 implies

Qo = EXT or m2 = Ro/R which is the critical coupling condition). The

value of dVD/df for a = 1 is

dVD DP Qo DP
df 2 f 4B [39

where B = cavity
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The voltage output of the discriminator can be written approximately

as

V = Af [40]
D BW

for Af = f-fo<BW = cavity bandwidth.

The main sources of noise in the discriminator are the diode noise, and

the differences in the characteristics of the two diodes. These produce an

output voltage VnD, and the final discriminator voltage VD will be

V DP Af + V [41]

Up to this point, we have considered the case where the cavity Q is a

constant Qo and does not depend on the density of free carriers in the sam-

ple. This is true if the losses associated with the sample are smaller

than the cavity losses. However, when the filling factor n is increased in

order to get a higher response, the cavity Q depends mainly on the losses

associated with the power absorbed by the free carriers in the sample. Con-

sidering this, a change in the density of free carriers induces a variation

in the cavity resonant frequency f and also in the cavity Q. Then, from

Eq. [37] we consider three cases depending on the relative values of a in

which, for each case, there will be two different values of free carrier

density denoted by sub-indices 1 and 2.

Case a) for a1, a2 >> i, or Qol' Qo2 >> QXT which is the overcoupled con-

dition
Af

AVD = 2PDQE(6 1  62) = 2PDQE  f [42]

Case b) for al = 2 = 1, or Qol Qo2  EXT'

AV P 1 0262 31
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R m:l
o

V w R L TC

FIGURE 22. Equivalent circuit for the cavity
coupled to a waveguide.

OSCILLATOR DISCRIMINATO VD nA. + VnD

o -A Vi

FIGURE 23. Block diagram of the feedback loop
and the sources of noise.
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Case c) for al, a2 << 1, or Qol0 Qo 2 '< QEXT' which is the undercoupling

condition

AVD = 2PDQE(2l61 - 262) [44]

f - fol f- fo2

where 6 1 , 62  f

f o2 - fo -Af
and 61 2 f f

Sfol o

5. SELECTION OF THE OPERATION REGION

Replacing the value w oRCT for the cavity Q, where RT is computed from

1 1 245
2

-- = - 2 -- += + g2G(4, aW) [451RT RC Rsample RCo o

we see that when the sample loads the cavity, its Q is mainly determined by

the sample losses.

1 [46]

g2G(4 , WoC)
0

Then the cavity Q is

oT [47]
Q = WoRTCTo4

g2G(-, W)
0

The change of the cavity resonant frequency was expressed by Eq. [36]

2 
2

Afo= - B(4, wor). [36]
2T o

Using Eqs. [47] and [36] in Eqs. [42], [43] and [44], we obtain the output

voltage of the microwave discriminator as a function of w and w20 p

Case a) for al ,  >> 1

Af0  2PDQEg2  W2

MVD = 2PDQE f 2 C AB( - 4]
o T 0
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W2

Taking AB(-, WoT) = -W C T2 AW2 which is the maximum variation and corres-
0 0 0 0 0 [

ponds to the Region II where w = p, and Eq. [30]

g2 C

= 2 CT

we have

AV = (QE16nT 2Wp ) An

or
PD E An

v D -= Q 8 r) -n [491
D Q T o n

0O

where Qo in Region II (wo = Wp) is
0 0 p

oRsC woCT

o = oRTCT g g2 - C Rs

_O 0

o

Q o [ 50]
o 2no 2nl

o p

Case b) for al, Ca2  1. Starting with Eq. [43]

PD ) [43]
AVD 2 -(o1 - Qo262

where 02.

B.( , W r) 2
Qo Af Bi  0 0 W )W, o51o o

Qoi f .= -) - )o, [51]
o G (--, o) 0o

0

we obtain 02

B(-, W) 2 2T
PD o PD 2wpT n [52]AV = -A = ) n [52]aD 2 A wz W n

G(-, o T) o
O

or

PD 2Ao

VD 4 w E

Note that this result is valid for all frequency regions ( - ).
o> p
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Case c) for al, a2 << 1. Starting with Eq. [44]

AVD = 2PDQE(a61 - 262) [441

we make analogous replacements as in cases a) and b) to get:

PD o An [53
AVD = ( 8a) 1531

This result is computed for frequency Region I, (w < w) which has the best

response in this case.

6. COMPARATIVE PERFORMANCE

In order to compare these responses with the photoconductive effect,

we compute the increment of voltage at the discriminator under the assump-

tion that the reflection coefficient of the cavity is:

1 - m2 Rb
p =[5411 + mZRob

Eq. [54] is derived from Eq. [21]. Very low values of Q are used for

18
this case, and the best condition is for critical coupling to the cavity

The discriminator voltage then becomes

PD An155]
AVD = -; n

Case b), a = 1, is shown by Pound to produce the maximum output error

voltage from a klystron oscillator stabilized by a cavity. Assuming a

Photodielectric Detector and a competing Photoconductive Detector will op-

erate in this mode, we can compare their performance by defining a Perform-

ance Factor R as the ratio of Eq. [52] and Eq. [551.

AV 2 ww2,
= PDE [56a]

PCE o
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Since a = ne2 T/m* = W2 TE., we can rewrite Eq. [56a] in terms of the dielec-

tric time constant TD = £/Co to get

2 [56b]
oD

This shows a Photodielectric Detector will be more sensitive than a Photo-

conductive Detector if w TD< 2. This relation guides the designer in choos-

ing between the P/D detector and P/C detector if the frequency and dielec-

tric time constant of the semiconductor is fixed. The semiconductor would

be chosen because of its quantum efficiency at the optical wavelengths to

be detected. Its dielectric time constant would be subject to considerable

variation by doping.

Sommers, et al.18,19 has described the performance of the Photoconduc-

tive Detector which uses a magic-tee discriminator. It produces the same

discriminator voltage, VD, from a change in reflected power due to a change

in the real part of the reflection coefficient. Eqs. [56a] and [56b] pro-

vide a means to compare the changes in the real and imaginary components of

p, given Eq. [21], Chapter I. This puts the Photodielectric Detector in a

position to be compared quantitatively with the Photoconductive Detector

for Sensitivity.

For the Photodielectric Detector, the change in resonant frequency is

greatest in Region II. Taking

2 2

Af AB (4 Wo 20rC B('w,  oD) [36]
T o

and

AB(w , WO T ) =  2Ao 2  e [571

with Eq. [30]



47

Af = - 2nf T2 Aw2

0 o p

or also

Af o= A [58]
o E: o

then

o _ 2ntA - Ac [5=2n.A - 2neo ( ). 59
o o 9

7. FEEDBACK LOOP

Figure 23 shows a block diagram of the system as described in the in-

troduction, but includes the sources of noise due to the diodes VnD and

amplifier VnA

The frequency of the oscillator source (klystron) f is given by
osc

Eq. [60]

f = f + KV [60]

where fl = the klystron frequency when Vr = 0,

V = the incremental reflector voltage, and

K = the pushing frequency factor of the klystron.

The output voltage of the amplifier is

V = -AV. =-A(V + V nA [61
o 1D nA

where A is the amplification factor. Calling Eq. [41] the output voltage

of the discriminator,

S= Af + V [41]D 2Bw nD

for Af = f - f
osc o

Then, combining Eqs. [60], [61], and 41] together results in the ex-

pression for the oscillator frequency of the circuit shown in Figure 23.
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S- + H__ KA - V + V ) [62]

AKDPQ
where H = 0. [63]

2f
0

EXAMPLE:

Typical values are: A = 103

D = .05 V/mW

P = 1 mW

Q = 103

K = 1 MHz/Volt

f = 1010 Hz
0

with these values, H = 25.

The maximum frequency shift is for

PDQo a
VD 2f (+a

0

KAPDQo a H
a•= -- = 12.5 MHz.

osc max 2f a= 1 2

From Eq. [62] the responsivity of the loop system can be computed:

Af = af [64]
osc 1 + H o

8. CIRCUIT NOISE

From Eq. [62] the mean square fluctuation of the klystron frequency

Af 2  can be computed as follows:
osc

OSC2 -f H PA TP AD4

+ (V2  V2 . [65]
1+H nD+ nA



49

Eq. [65] shows the importance of feedback in the circuit when the value of

H is much greater than one:

KAPDQ o
H= > [66]

2f
o

Under this condition the circuit noise is attenuated and Eq. [65] becomes

2

Af + - (7 +  ' )  [67]
osc o DP nD nA

where the first part corresponds to the cavity resonant frequency noise from

all mechanisms including the sample noise, and the second part is due to the

amplifier and diode noise.

9. DETERMINATION OF THE OPERATING FREQUENCY FOR THE PDE

From Eq. [62] we find

Af af [68]
osc 1 + H o

for

Af =V = V = 0
1 nD nA

and the measured value of f is within the limits:
osc

Af = Af + (A f )1/2 [69]
osC O osc

where Af2  is taken from Eq. [671osc

- T + , 7 (v + T 1701
ose o DP/ nD nA

This implies that

10

which defines the value required for H so the noise from the source can be

neglected.
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For the detectivity to be limited by the sample noise, Af2, and not by

diode and amplifier noise, the following relation has to be true:

S2i 2
o DP nD nA

or

O -2 (Vd +Vr
D BW Ao nD nA

Substituting Eq. [52] into [69] we have:

,2,DP ~ 2 T

LN7 > 'V + V7
2 wN nD nA

where N and AN are number of free carriers.

If we assume that the diodes and amplifiers are limited by thermal

noise then

V + 7 = 2KTR B [74]
nD nA L W

where K = the Boltzman's constant

T = absolute temperature of the diodes and amplifiers.

RL = resistance, diode and input of the amplifier.

BW = bandwidth.

AN2 is computed assuming that it originates from gaussian or thermal

fluctuations, then it becomes2 0

= (AN - )z = -7 = N [75 ]

Using Eqs. [71] and [72] in Eq. [70] we have

(DP)2  1 2KTRLVs 2m*E [76
SBW n e

where Vs is the sample volume.

If the inequality, Eq. [76], is true, then the output noise due to the

diodes and amplifier is negligible compared to the sample thermal noise.

This latter component is the dark current noise. For example, we compute
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the inequality, Eq. [76],.for the following typical values:

12 3For the Sample: n = 10 elect./cm3 ,

V = 10-2 cm3 ,s

'r = 10 sec,

= 10 o,

m* = mo;

For the diodes
and amplifier: RL = 200 A

T = 300 0K.

Then with these values we have

(DP)2 1-- > .68 x 10-30Volt2 sec 3 . [771W B

Inequality, Eq. [77], indicates the maximum value of the cavity resonant

frequency w for the different values of the bandwidth BW, diode efficiencies

D, and the source microwave power P.

The maximum allowed value of P is such that the average distance

travelled by the free carrier in a period is less than the length of the

sample. From Eq. [2], the maximum distance travelled by the free carrier

is at a frequency equal to the plasma frequency. For this case, the re-

lation between the maximum power P and the sample length is
max

nV m*92R
2

P s [78]max T

for n = 1012 elect./cm3 ,

-2 3V = 10 cm

m*= m

T = 10 sec.

then P = 10-10 W2 02
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and for P in mm and P in mW

Pmax(mW) = 10-13w2 2 (mm) .[79]

Using Eq. [79] into [77] and for Z = 1 mm

-13 2 x 2  1 3
1 (D x 10 x )2 1 > .68 x 10-30Volt2sec

BW  1 BW

D 2 > .68 x 10 -4Volt2sec [80]

where D is in Volt/mW.

Typical values of D are of order of unity then

2 4 -
- > .68 x 10 sec . [81]

BW

This shows that higher frequencies have better performances if, and only if,

the power can be increased up to P . The value of P can be computed

from Eqs. [78] and [79].

10. BANDWIDTH OF THE CAVITY

To measure the resonant frequency of the cavity, the response has to

relax to its steady state, which happens when the transient state is over.

The decay constant is TC,
Q

TC =
0

and the bandwidth is defined by

f
BW = = ~- . 82

Under the condition that the cavity Q is mainly dominated by the sample,

from Eq. [46] we have

Q = WoRTCT = [83]

g2G(, ,
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From Eq. [32] can be chosen three frequency regions to compute

G(W2/W2, WT),
p o o

REGION I: w < w and w z >-l
p 0 o

W2 W2

G(4, W T) c()W C [841
O O

o o

REGION II: =
P o

2 2

G(-, W T) ( WcF o [851
o 0

REGION III: w > w and w oT > 1
p o o '

W2  ,2

G(4, -c) %C [86]
p 0

with Eqs. [84], [85], [86] and [30] in Eq. [83], we have the different values

of Q for

p

1 ~W
REGION II: 0 

82riwo p
WT 2

REGION III ~III (2 [89

11. OTHER ADVANTAGES OF THE PDE

The PDE also has all the advantages of RF bias techniques. These are

the following:

First: No ohmic contacts are required as is the case for DC, Photocon-

ductivity. For photoconductivity carriers collected by one con-

tact must be replenished by the other, or injected into the bulk

in order to maintain charge neutrality.

Second: The RF or microwave field is applied at a frequency sufficiently

high that carriers travel slightly less than the width of the
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sample during one half of the RF cycle. The photocarrier is

then effectively trapped in the bulk of the material and it

shuttles back and forth until bulk recombination occurs. This in-

creases the effective lifetime.

Third: If the AC field is capacitatively coupled, the sample dimensions

can be made minute, and hence the gain can be high, because space

charge injection does not become important. The transformation of

the high impedance of the sample to low impedance of the following

amplifier allows the sensitivity to be maintained over a broad

bandwidth (i.e., in Eq. [74T) RL = 200 . This allows the use of

high purity samples.

Fourth: The gain in both cases depends on the voltage applied to the semi-

conductor. An AC field allows higher voltages for the same dis-

placement of the free carriers. This displacement is smaller than

the sample width to avoid carrier sweep-out. This means that the

gain for PDE and PC is proportional to the frequency.

12. OTHER SYSTEMS SUGGESTED TO MEASURE THE PDE

There are different methods that have been suggested
2 1 to measure the

change in the resonant frequency of the cavity loaded with a semiconductor.

All of these methods can be summarized into two types. The former use the

cavity as a part of a linear circuit. In the circuit there is a reference

source which applies a signal to the cavity and the cavity output is com-

pared with the input. From this comparison is determined the change in

cavity resonant frequency.

The comparison can be made in many ways: power of the reflected wave,

power of the transmitted wave and phase difference between the output and
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input. All of these ways are related and have analogous results to the

system analyzed in Chapter II of the present work. The transient and

steady state analysis of these types of systems are easy to analize and

the results are computed without difficulties.

The latter method uses the cavity as a part of a non-linear system.

An example is an oscillator built with a transmission cavity and a travel-

ing wave amplifier. The transient response of this system is difficult to

analyze, but the operating conditions under steady state are easy to de-

termine. The frequency change of the oscillator is also proportional to

Q6 as was discussed for the former type of system. An oscillator using a

22
klystron loaded by the cavity is another example of this class.. The change

in the impedance of the cavity due to a change in the sample will cause a

change in the frequency of the klystron proportional to the pulling factor.

In this case, the change in frequency is also proportional to the change

of the product S6, which represents the susceptance of the cavity.



CHAPTER III.

THE SAMPLE AS A PHOTODETECTOR

1. INTRODUCTION

For a general photodetector there are three major processes: (1) Car-

rier generation by incident light; (2) carrier transport and/or multiplica-

tion by whatever current gain mechanism may be present; and (3) interaction

of current with external circuitry to provide the output signal.

In Chapters I and II points (2) and (3) above, are treated in classi-

cal terms. A lumped model was developed, and the difference between the PDE

and PC was established. We saw that the PDE provides a different way to

measure the variation of free carrier density in a semiconductor. We have

also defined Performance Factor (Eq. [56]) which is the ratio between the

PDE and PC responses.

This chapter deals with point (1) mentioned above, corresponding to the

interaction between the radiation to be detected and the sample material

used as a detector. This interaction is similar in all solid state photo-

detectors, for which it is convenient to write a summary on the extensive

work done in this area. The conclusions of this summary, especially re-

lated to photoconductivity, will be extrapolated to the case of the PDE

through the Performance Factor (Eq. [56]). This is done in order to calcu-

late the different quality parameters for the PD detector.

The generation of carriers by incident light is governed by the main-

tenance of a non-equilibrium carrier distribution through a dynamic balance

of the generation and recombination processes. The sensitivity is related

directly to the non-equilibrium carrier density which can be established

by optical absorption. The speed of response depends on the kinetics of

56
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new non-equilibrium situations responding to changes in the level of optical

excitation.

Various summaries are available on photodetector theory. They compare

the different types of photodetectors and give expressions for the appro-

priate parameters for each type. Of greatest interest to us are those on

23-28 '18,19
solid state photodetectors and especially AC photoconductors be-

cause they have the photon bulk absorption and the transport processes in

common with the PDE.

Four different models are generally developed to explain the photoelec-

trical properties of (bulk) solid state semiconductor photodetectors. These

models represent different energy levels for the electrons, conduction and

valence band, and traps and recombination centers . In general, the equa-

tions that represent these models are coupled non-linear differential equa-

tions. Steady state solution can be found using various approximations.

The brief summary on photodetectors covers: generation and recombina-

tion of free carriers, spectral and frequency responsivity, and noise for

different materials used as PDE detectors. The chapter includes a discus-

sion on improving photodielectric response.

2. GENERATION AND RECOMBINATION

Using the simplest model in which the detection process is determined

by one type of carrier only (i.e., the other type of carrier recombining

very rapidly), the rate equation of the electron density n has the follow-

ing form:

dn = gej2fmt n [90]
dt TL

where gej2lTfmt is the generation rate of electrons per unit detector area A

given by
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P
g n(v) 1[91]

Ahv

n(v) is the quantum efficiency coefficient. It is defined as the ratio of

carriers detected to incident photons. Figure 24 shows a qualitative de-

pendence2 4 of n(v) versus the photon energy as function of the bulk light

absorption coefficient a and the surface recombination. Po is the power of

the incident light on the surface of the detector. Its values vary as

P(x) n P e- a [92]
o

where a = the bulk absorption coefficient,

hv = the photon energy of the incident photons,

f = the frequency of the modulated signal.

The steady state solution for Eq. [90] is

n(fm) = gTL
[1 + (2fff t )1/2

where TL is the lifetime of the free carriers.

The last equation influences the frequency response of the photodetec-

tor. For

f < --1 n(fm) = gr [94a]
m 2 wTTL m L

and for

f > n(f ) = [94b]
m 2n m 27rf

The bandwidth of the sample is defined by

B = 951s 21rTrL

From Eq. [94a] we note that the response is directly proportional to TL

From Eq. [92] the bandwidth is inversely proportional to TL .
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FIGURE 24. Qualitative dependence of quantum
efficiency on photon energy.
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3. NOISE IN PHOTODETECTORS:

The sources of noise are classified25 , depending on the location of

the source:

1. Noise produced by the blackbody photon field.

2. Noise produced by the ambient photon field.

3. Noise associated with the signal.

4. Spontaneous noise characteristic of the device, but not asso-

ciated with 2, above.

5. Noise associated with the circuitry and amplifiers.

The three former sources are external to the detector and are common

to all photodetectors. Under ideal circumstances, these can be neglected

leaving only the two latter sources which determine the quality of different

photodetectors and allows their comparison.

From the detector point of view it is more useful to distinguish the

(spontaneous) noise of the device in different physical process, the most

important are:

1. Thermal noise,

2. generation-recombination noise,

3. transport noise (diffusion and drift, especially shot noise),

4. excess noise (1/f, temperature, surface imperfections).

The total noise voltage NT(fm) at the output of the detector is:

N (f ) = [Sd (f ) + S (f )]1/281/2 [96]
T m det m eq m W

where S (f ) is the frequency density fluctuation noise associated withdet m

the detector and S eq(f ) is the equivalent frequency density fluctuation due

to the external circuit.



The incident signal to be detected is represented by j(v, fm) which is

the number of photons per second incident on the total detector area A,

P(f )
j(v, f) m [97]m hvA

where v and f represent the spectral and modulation frequencies, respec-m

tively.

The output response of the detector is represented by r(f ). Then the

responsivity of the detector is defined as R(v, fm ) such that:

r(f ) = R(v, f ) j(v, fm) .  [98]

The power signal noise ratio SNR is

r(f) 2 j2(v, f )R2, f

SNR = m m m
N (f ) [S d (f )m ) + S e(f )] BW

T m det m eq m W

The spectral apparent noise equivalent power (spectral ANEP) is defined as

the input signal J' for SNR = 1, thus:
eq

P' [v, f , BW, A] = hv J'I [v, fm BW , A] =
eq m W seq m W

hv[S det(f) + S e(f)]l/2 (B )1/2
det m e m Woo

R(v, f )  [100

The quantities in the brackets indicate that P' depends upon the optical
eq

frequency v = c/A, the modulation frequency f , the bandwidth of the detector

BW, and the detector area A.

Similarly, we introduce the spectral real noise equivalent power

(spectral RNEP) defined as:

hv[S det(f ) Bw] 1 / 2

Peq [, fm' BW, A] = R(, f [101]
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The spectral RNEP holds for the detectors in which the noise does not

depend on the external electronic circuit (i.e., S e(f) << S det(f m). This

type of detector is called "Class A" by Jones30  Those that behave as Eq.

[100], in which the noise depends on the external circuit, are called

"Class B" detectors. No figure of merit can be given for these detectors

unless special reference conditions are defined.

In Chapter II, Section 9 are defined the operating conditions under

which the circuit noise is minimized and the detectivity is limited by the

sample noise. This classifies the photodielectric detector among the var-

ious types of Class A detectors.

The spectral specific noise equivalent power (spectral SNEP) is ob-

tained when the bandwidth BW = 1 Hz, and when the area of the detector

2A 1 m . It is denoted by Pe [X, f , 1, 1]. For most detectors the rms

noise is proportional to the square root of the area. Hence in an ideal

case

Peg[X, f, BW , A] = Pe[X, fm i, 1] (ABw)1/2  [102]

The detectivity is defined as the reciprocal of the noise equivalent power,

so that the spectral detectivity D* is the reciprocal of the spectral SNEP.
D* = D[X fro 1 1] = 11 -1

D =' P [ , 1, l] = D*[X, frm] [103]
eq m

The units of D* are cm sec-1/2W- 1

It is difficult to summarize the sample noise mechanisms in various

materials, since they are widely different. Reference 25 expresses the

change in electron and hole densities in solid state bulk photodetectors.

These are done for four different ideal models in which generation-recombi-

nation noise is considered as the limiting noise.
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In order to compute the detectivity for the PDE we define the response

r(f ) as the output of the discriminator given by

r(fm ) = VD PD ( e 2 T ) AN(f [104]m D 2 m*We V m
is

where f is the light modulation frequency, and AN(f ) is the change in num-
m m

ber of electrons generated by the optical signal.

For the conditions given in Sections 8 and 9 of Chapter II, the output

noise is due mainly to the fluctuations of free carriers in the sample,

ANZ(f ). Then

NT(f) PD ( e2T )(AN(f ))1/2 [1051T m 2 m*w V m

with the Eqs. [104] and [105] in Eq. [99], we compute the SNR for the PDE

2 'Nfm)
SNR = = m2(f [106]

T m AN2(f )

AN(f ) is due to the change in signal Power, and it can be expressed in

terms of a spectral responsivity for electrons, RN (v, fm),

AN(f m ) = RN(v, f ) j(v, f ). [107]

Recalling Eq. [93], AN(f ) becomes

RAgrL
AN(f ) = A = [108]

[1 + (2f mTL)]/2

where k is the effective thickness of the sample. This is considered to be

of the same order as the penetration depth.

With Eq. [91] for g and Eq. [97] in Eq. [108] we have

AN(f ) = n(v)ZA L)] j(v, f )  [109]
m [1 + (27if m )2]1/2 m

mL
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then
R(N)(v, f ) = An(v)* L 11101

R( , [1 + (2fm L)2] [i

AN2 (f ) is due to free carrier fluctuations in the sample and it is ex-
m

pressed by

AN(f m ) = sN(fmBW

where SN( fm ) is the frequency density fluctuation of electrons and BW is

the bandwidth of the detector.

SN(f m ) is computed 3 2 for an extrinsic type of sample, assuming genera-

tion-recombination noise. The final result is

S(N)(f ) 4nA .L . [111]
m + (2f m T)

Similarly, for a near-intrinsic type of sample we have

s(N)(f ) 4(np ) A * L [112]
m n+p 1 + (2ff L)j

mL

For the extrinsic case, with Eq. [109] and Eq. [111] into Eq. [1051, we

have the final expression for SNR

02 (v) Lp
SNR = .L [113]

hnA9BW

For A = 1 cm2 , BW = 1 Hz and SNR = 1, the specific detectivity D* for the

extrinsic sample is

D*(extrinsic) = n(v) L)1/2. [114]
2hv n'

Similarly for the near-intrinsic type2 5

(N) np (Ak) [115]n+p 1+ 2ff T
mL



which gives the final result for D*

, [ n+ p T 1/2
D*(intrinsic) = r n ' [116]

2hv L

4. EXPERIMENTAL EXAMPLES

In previous experiments on the PDE carried out by Arndt and Stone1

with high purity samples of p-type germanium and silicon, specific detectiv-

ity as high as 3 x 1013cm cps l/2/Watt were found. Also, a change in the

cavity resonant frequency of 15 KHz per milliwatt was measured. The ex-

periment uses a cavity at 910 MHz, a GaAs light source (9000 A), a filling

factor n = 0.02, a relaxation time T = 10-1 0 sec, a lifetime 'L = 10 sec,

-2 3
and a sample volume V = 10 cm . Using these values in the model of the

present work (Eq. [58]), a responsivity of 46 MHz per mW is possible, three

orders higher than the value observed in the experiment. This theoretical

performance can be achieved by observing the following conditions:

1. A higher resistivity sample would produce a lower electron density

in the dark. This decreases the noise equivalent power.

2. Materials with high quantum efficiency at 9000 X could be used.

3. The highest change in resonant frequency would have been obtained

at a cavity frequency equal to the plasma frequency of the sample.

4. The low cavity Q was due to the effective sample losses (i.e.,

losses of the free electron generated by the incident light) in

a sample larger than necessary to absorb all the light.

5. The loaded cavity should be coupled to the waveguide at the critical

coupling condition.

6. The surface recombination has to be minimized by etching the surface.

(This reduces surface imperfection).
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From data by Kung 31 on 7.4 O-cm p-type silicon, shown in Figure 25,

the computed performance gave Lr = 2.74 at 4.20K and at a frequency of

960 MHz. This sample had w2  w2 , giving the Performance Factor, Wr = 5.58.
p

While this performance could have been improved by observing the condi-

tions cited above, this photodielectric detector was 5.58 times as sensi-

tive as an AC photoconductive detector in the same circuit.

The sample used by Kung had a filling factor of 0.02 from cavity fre-

quency-shift measurements. From Eq. [58] a value of n = 0.0003 is calcu-

lated, meaning the useful volume of the sample is n 67 times less than the

actual volume, due to the large photon absorption coefficient for silicon

at 9000 a. An improvement in detector performance of this much can be ex-

pected if the sample size was reduced.

Experiments by Johnson3 3 on InSb at 2.33 GHz, 4.20K gave an wr = 3.86

and w2 - 0.8w2 . This photodielectric detector is 6.2 times as sensitive
p

as the same system in the AC photoconductive mode as predicted by the Per-

formance Factor, f.

From these examples, it is evident that photodielectric detectors can

produce a greater output signal than an AC-biased photoconductor, and that

the performance previously reported could have been significantly improved

with appropriate choice of materials and cavity frequency.

In retrospect, the AC photoconductive detector measures the real part

of the reflected power from the cavity. The photodielectric detector mea-

sures the imaginary component of the reflected power. If the semiconductor

parameters are properly chosen, the SNR and detectivity of the PD detector

will be superior. The bandwidth will be the same in each case for a given

sample in the same cavity. A significant advantage is the absence of ohmic
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contacts on the PD sample, which increases the variety of materials which

can be used. This, in turn, widens the choice of wavelengths which can

be detected, since ohmic contacts are virtually unattainable on dielectric

materials at low temperature. The value of D* is a function of the sample

parameters at a particular wavelength. As such it has the same value for

PD and PC detectors.

5. CONCLUSIONS

The photodielectric detector is shown to be equal to superior to an

AC photoconductive detector using the same sample, frequency, temperature

and external circuitry. The Performance Factor, r E 2/wo D, (see p. 45),

is the numerical ratio of sensitivities. Since the cavity resonant fre-

quency, 0o, and the dielectric time-constant of the sample, TD, are con-

trolled by the system design and choice of semiconductor, the performance

factor can be greater than unity. The performance parameters derived in

this report can be directly compared with any photodetector which can be

compared to an AC photoconductor.

Thus, the research conducted under this grant has successfully demon-

strated the photodielectric detector deserves a place among all the best

ways to receive optical and infrared signals.



APPENDIX A

ELECTRON HOLE DYNAMIC EFFECTS
WITH A STATIC MAGNETIC FIELD

Following the argument of section 3, Chapter I, for the case when two

types of carriers, are present in the semiconductor, Eq. [Al] is the equa-

tion of motion for the particles. The particles are coupled by forces ori-

ginated from their restoring or depolarization fields.

e eB
1* +2 1e elBZxl +_ _ x  + W x + P x E y

T 1  xl m 2

eB
1 + _Y + W2 y + W y2 = e- x

1 pyl py y22 m

1. " e2 e2Bz*
2 + --- x + W x + 2  1= - -E -

T2 2 px2 m2  2

e2B

2  7 2  +2 py 1  M*22 [A.1]
y2 Pyl 2

The fourth term in the first part of each equation in Eq. [A.1] represent a

coupling term.
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APPENDIX B.

FREE, BOUND AND TRAPPED ELECTRON
DYNAMICS IN AN RF ELECTRIC,FIELD

These cases involve an equation of motion for each particle. In each

equation there is present a coupling term due to each particle. This is

represented by Eq. [B1].

x1 e
+ -+ W p 2 x + p3X3 + E

K T2 p 2x p2 p3 x 4x m*

2 2 p2x2 p7x p m *

2 e

3 T o33 x4 plx1 + Wp2X Em*

3 e

x+ 4  + 4 X 4 + W2 X + W 22  +2 - E [B1]4 T 04x4 plx1 p2x2 p3x3

when the sub-indices are:

1 for free electrons,

2 for holes,

3 for shallow electrons,

4 for bound electrons,

the plasma frequencies are

n.e 2

W2 =I for i = 1,3
pi m#E

10

2 .o does not depend on the density of carriers ni, but on the atomic bind-
O1

ing energy of each particle.
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